If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2=44
We move all terms to the left:
4z^2-(44)=0
a = 4; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·4·(-44)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{11}}{2*4}=\frac{0-8\sqrt{11}}{8} =-\frac{8\sqrt{11}}{8} =-\sqrt{11} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{11}}{2*4}=\frac{0+8\sqrt{11}}{8} =\frac{8\sqrt{11}}{8} =\sqrt{11} $
| 10f-2=46 | | 2x-15/2=3/4 | | 10(x-3)=8(x-2) | | 4p/11=3 | | 9=m-1 | | -2=b-6 | | −7(6x−9)−12=8−2(x+11) | | x-3=7+x | | -6+p=-10 | | 129=73-n | | k+(-10)=-16 | | 16=1/2(3+b2) | | x+(-7)=2 | | 16=10+b | | m-10=-16 | | -12=r-9 | | 153x=160x+21 | | 11x+1=145-x | | 28.92=6g+3.84 | | -153x=160x+21 | | 57=(30)t | | 3^9x=3^7x+^8 | | X-10=3x-60 | | -6x-15=-17-7x | | 2m–12=18 | | (2x=19) | | 33=z+15 | | (x/7)^3=10 | | (x+10)=(4x+20)° | | 33x+55=154 | | 27x-10=71 | | 6x+4x+12=220 |